
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2021 1

Optimizing cooperative pallet loading robots:
A mixed integer approach

Mattia Laurini1, Luca Consolini1, and Marco Locatelli1

Abstract—We consider a system with a metering conveyor that
feeds a palletizing machine. Multiple robots cooperatively move
packages to obtain a desired final pallet layout. We address
the problem of finding the optimal sequence of manipulations
and packages positions on the conveyor that allow to maximize
production. Our main contribution is the reformulation of this
operation as a mixed integer linear programming (MILP) prob-
lem, that we solve with a metaheuristic that exploits a standard
commercial solver. We also present some numerical experiments
on randomly generated problems.

Index Terms—Planning, Scheduling and Coordination; Coop-
erating Robots; Task and Motion Planning

I. INTRODUCTION

ROBOTIC palletizing systems have become widely
present in manufacturing industrial facilities. In partic-

ular, in food, beverage and dairy industries, these machines
allow for a faster production chain, ensuring an efficient
palletizing process which results in a quicker storage and
delivery of goods. The main task that these machines are
designed to carry out is to form layers of products according
to specific patterns and stack them on pallets.

In this paper, we propose a mixed integer linear pro-
gramming model for capturing the essential features of a
palletizing strategy. We will consider a system with a metering
conveyor that feeds a palletizing machine with packages that
are assumed to have all the same size. Multiple robots move
packages in a cooperative way in order to obtain a desired final
layout, which is given a priori, with the aim of maximizing
production. We will formalize this problem with a model
that is inspired by the traveling salesman problem (TSP) and,
in particular, on its variations that contemplate the presence
of multiple traveling salesmen (mTSP) and time windows
(TSPTW), putting an additional constraint on the moment
at which a traveling salesman is allowed to visit cities (see,
e.g., [1], [2], [3], [4], [5]). Hence, the problem of choosing
a palletizing strategy will be reformulated as a multiple trav-
eling salesmen problem with time windows (mTSPTW), with

Manuscript received: December, 18, 2020; Revised February, 2, 2021;
Accepted April, 13, 2021.

This paper was recommended for publication by Editor Jingang Yi upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by Regione Emilia-Romagna in project “ROBOT-A” of framework
“POR FSE 2014/2020 Obiettivo Tematico 10”, by OCME S.R.L. and by the
Program “FIL 2019 – Quota Incentivante” of Università degli Studi di Parma
and co-sponsored by Fondazione Cariparma.

1All authors are with the Department of Engineering and Ar-
chitecture of the University of Parma, Parco Area delle Scienze,
181/A, 43124 Parma, Italy. {mattia.laurini, luca.consolini,
marco.locatelli}@unipr.it.

Digital Object Identifier (DOI): see top of this page.

additional constraints needed for avoiding collisions among
packages during manipulations. In this setting, traveling sales-
men represent the manipulators of the palletizing system,
whilst cities represent positions on the conveyor belt. We call
this problem the Pallet Pattern Placement Sequence Problem
(3PSP).

Literature review
In literature, a relevant amount of work has been done on bin
packing (see, e.g., [6], [7], [8], [9], [10], [11], [12], [13]) and
on optimizing space usage on a pallet, maximizing the amount
of stacked products, which may be uniform in size or non-
homogeneous (see, e.g., [11]), both in two dimensions (see,
e.g, [6], [7], [8]) or three (see, e.g., [9], [10], [11], [12]). Many
works are also devoted to the so called Pallet Loading Problem
(see, e.g., [14], [15], [16], [17], [18]). However, in this work
we do not focus on optimizing pallet usage as we assume a
pallet layout is given a priori. Note that this situation holds true
in many real life applications in which customers provide their
own pallet layouts to palletizing machines producers. Here,
we focus on developing a palletizing strategy for achieving
a given pallet layout in order to maximize production. Some
works introduce the 3PSP, however they do not mathematically
model the problem and, hence, do not provide any specific
algorithm for solving it (see, e.g., [19], [20], [21]). To the best
of our knowledge, there are no works that explicitly address
the problem of modeling the 3PSP in high-speed palletizing
machines and provide an explicit solution algorithm.

Statement of contribution
The main contribution of this work is the reformulation
of optimal planning for cooperative palletizing robots as a
mixed integer linear programming (MILP) problem. To the
best of our knowledge, the 3PSP has not been addressed in
literature. Hence, this reformulation provides insight in the
structure of this relevant industrial problem and a rigorous
mathematical formalization. Another advantage given by the
MILP formulation is the multitude of available solvers that can
be used for computing a solution. In this work, we solved the
resulting model with a solver for MILP problems (in particular,
we used Gurobi [22]). Due to the complexity of the model
and the large number of decision variables, we also developed
a metaheuristic which allows us to solve problem instances
with tens of packages (which is enough for addressing most
industrial scenarios). In order to improve performances, in
future works, we will use approaches specifically tailored to
the problem at hand (for instance, dynamic programming),
leveraging the rich literature on TSP and its variations.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2021

y

x(0, 0)

infeed
conveyor

manipulator working area stopping bar

complete layer

Fig. 1: A palletizing system with two manipulators, a stopping bar and a single-line infeed conveyor.

II. GENERAL DESCRIPTION AND ASSUMPTIONS

We consider the palletizing machine together with an inertial
coordinate frame fixed on the moving belt (see Figure 1). In
particular, assuming that the conveyor belt moves from left to
right, the origin is placed at the position that the bottom-left
corner of the belt occupies at the initial time. Moreover, we
assume that the x-axis is parallel to the belt velocity and that
the belt moves with constant speed w.

Products are transported by a conveyor belt and moved
simultaneously by multiple robotic manipulators. Initially,
packages are placed on the belt in a single track from an
infeed conveyor. Multiple robotic manipulators move packages
so that all of them reach the y-coordinate and orientation that
correspond to an assigned pallet layout. Then, a stopping bar
at the end of the conveyor belt and orthogonal to it aligns
packages along x-axis before they move on the pallet. Note
that, in general, there may be more than one stopping bar at
the end of the conveyor belt and the outfeed conveyor; in this
framework we assume there is only one stopping bar. The
speed of the conveyor belt is a tuning parameter and is as-
sumed to be constant during the palletizing process. Moreover,
in high-speed palletizing machines, for speed of execution,
packages are not lifted from the belt during manipulations.
Hence, we must make sure that packages do not collide with
each other.

Since the palletizing process can be the bottleneck of the
whole packaging line, it is important to reduce the time needed
to obtain the requested layout in order to maximize fully-
loaded pallets production over time. Hence, in this paper, we
aim at finding the package positions on the belt, the sequence
of manipulations and the belt speed that allow to obtain the
final layout in minimum time. In particular, we will show that
this planning task can be represented as a linear optimization
problem with binary variables.

To simplify the mathematical formulation of this problem,
we make a number of assumptions:

i. Packages are identical to each other and rectangular.
ii. Manipulators working areas do not overlap.

iii. Each package is moved once.
iv. The space required by the end-effectors of manipulators

is not considered.
v. At the end of the conveyor belt, there is a stopping bar

orthogonal to it.
vi. With respect to the moving belt reference frame, packages

are manipulated along y-axis.
vii. Packages are not lifted from the belt during manipula-

tions.
viii. Conveyor belt speed w is a fixed parameter.

Without these assumptions, the resulting model would be
very complex and it would be difficult to present it in a concise
and readable way.

In particular, assumption i. can be relaxed in order to
consider non-identical packages or groups of packages with
different shapes. However, this would complicate the model
in terms of number of constraints to be presented and make it
more difficult to grasp the main features of this formulation.
Nonetheless, the benefit from removing this assumption in
regards of the model is twofold. Having non-identical pack-
ages implies that there need be precedence constraints between
packages which depend on the final pallet layout. These con-
straints would restrict the feasible region of the model allowing
for a faster search for a solution. Non-identical packages also
means that we can consider groups with different shapes of
identical packages which, from the model perspective, are
considered nothing but packages with different size. Hence,
grouping packages together, whenever possible and according
to the manipulators mechanical limitations, reduces the size of
the model.

Note that assumption ii. holds true for many palletizing
machines and would not be restrictive in several industrial con-
texts. Relaxing this assumption would not complicate per se
the collision avoidance constraints between packages that we
will introduce later on. However, it would require the handling
of collisions avoidance between manipulators whenever any of
these is not performing a manipulation. We believe relaxing
assumption ii. could be done within the mixed integer linear
programming approach, however, we have not yet explored
this generalization.

Regarding assumption iii., its relaxation, even though inter-
esting, would require a non-trivial modelization effort which
we think would result in a drastically more complicated model.
Probably, tailored solution strategies would be necessary in
order to solve such a model within a reasonable amount of
time with respect to the application.

Assumption iv. may seem like a restrictive one, however,
from the model perspective, considering the end-effectors size
would just result in larger collision avoidance areas. The nature
of the collision avoidance constraints would be the same;
they would just involve additional parameters (known a priori,
regarding the end-effectors size) which would just result in less
readable constraints.

Assumption v. is a design requirement that holds true
for many high-speed palletizing machines, which are usually
equipped with one (or more) stopping bar(s) orthogonal to the
belt velocity, placed at the end of the conveyor belt (and/or at
the end of the outfeed conveyor, if present), that horizontally
aligns packages and corrects misalignments along x-direction.

LAURINI et al.: OPTIMIZING COOPERATIVE PALLET LOADING ROBOTS: A MIXED INTEGER APPROACH 3

This implies that, in general, the x-coordinate of final package
positions need not correspond to the x-coordinate of the final
layout. In fact, x-coordinate mismatches are fixed through the
activation of the stopping bar(s).

Assumption vi. states that for any manipulation of a package
from an initial position (x1, y1) to a final one (x2, y2), it
has to hold that x1 = x2; that is, we assume that, from the
conveyor belt coordinate frame point of view, manipulators
are only allowed to modify the y-coordinate of packages.
Hence, all package manipulations are performed along paths
that are straight segments parallel to the y-axis. Note that this
assumption holds true in many industrial contexts and does not
prevent the system from forming any given pallet layout due
to the presence of stopping bar(s) at the end of the conveyor
belt, as stated in assumption v.. Moreover, this assumption
helps constraining final package positions to the initial ones
removing a degree of freedom over final positions placement
which can lead to a state space explosion of the model. This
assumption could be lifted in future works introducing types
of paths other than straight lines parallel to the y-axis. For
instance, manipulations could occur along a straight segment
which is not parallel to neither of the two axis, or it could
be divided into two consecutive segments, one parallel to the
x-axis and the other to the y-axis or viceversa. These last
two types of paths could be particularly useful for avoiding
collisions in case a straight line connecting the same pair
of positions would cause a collision with other packages.
However, the addition of these kind of paths would heavily
impact the complexity of the problem and, therefore, we
avoided considering them in this work.

Assumption vii. is another design requirement; in high-
speed palletizing machines, for speed of execution, packages
are not lifted from the belt during manipulations. This means
that it is necessary to ensure collisions avoidance during
manipulations.

Assumption viii. is a technical requirement, in fact, note
that if we would consider w as an optimization variable,
the resulting model would not be a MILP anymore as it
would involve non-linear constraints. In particular, time win-
dow requirements involve w−1. However, belt speed w can
be optimized by bisection, running various instances of the
optimization problem with different values of w, which is a
fixed parameter for each optimization instance.

III. PRELIMINARIES

We denote by N the number of packages and we consider a
set of M manipulators, whose bases occupy a fixed position in
the world’s frame. With respect to the moving reference frame,
at time t, the x-coordinate of the base of the m-th manipulator
is qm−tw, where qm is the initial x-coordinate of the center of
the m-th manipulator base with respect to the moving frame.
Note that, with respect to the moving frame, the bases of the
manipulators move along the x-axis with negative speed −w,
in the opposite direction of the conveyor belt velocity.

We assume that the operating space of each manipulator is
a rectangle parallel to the belt. On the x-axis, the rectangle is
centered at the base of the manipulator and has size 2W , with

W > 0. On the y-axis, it covers the whole width of the belt
(see Figure 1). With respect to the moving frame, at time t,
the operating space of the m-th manipulator along the x-axis
is the interval [qm − tw −W, qm − tw +W].
Formulation as a modified multiple Traveling Salesmen Prob-
lem with Time Windows (mTSPTW)
Mathematically, we can represent the problem at hand as a
mTSPTW with additional constraints.

As we mentioned in the Introduction, in this model, trav-
eling salesmen represent manipulators, whilst cities represent
positions on the conveyor belt; some positions are associated
to packages initial positions on the conveyor belt, others are
associated to packages final positions, according to a given
pallet layout. In this way, traveling salesmen are manipulators
whose task is to visit all initial package positions for picking
packages up and placing them at final positions, in order to
complete a pallet layout.

First of all, we define a graph whose nodes are associ-
ated to initial and final package positions and whose edges
represent the allowed transitions. Namely, we define a graph
G = (V , E), in which the node set is V = O∪I ∪F ∪R. Set
O = {O1, . . . ,OM} represents the initial resting positions
of the M manipulators, nodes in I = {I1, . . . , IN} are
associated to the initial positions of the N packages on the
belt, F = {F1, . . . ,FN} refers to packages final positions
and R = {R1, . . . ,RM} represents manipulators final resting
positions. Define, also, N = I ∪ F .

The edge set E is defined as follows:
• All nodes in O are connected to all nodes in I, that is,
manipulators can move from their initial resting position to an
initial position on the belt occupied by a package.
• All nodes in I are connected to all nodes in F . These edges
represent the motions in which manipulators move a package
from an initial to a final position.
• All nodes in F are connected to all nodes in I.
These edges represent the motions with which, after having
moved a package, manipulators return to an initial position to
start another manipulation.
• All nodes in F are also connected to all nodes in R. These
edges represent those motions in which, after having moved a
package, a manipulator goes to its final resting position.
• Each node in O is also connected to a corresponding node
in R. These edges represent the cases in which a manipulator
does not move any package, so that it goes directly from its
initial resting position to its final one.

Note that if a manipulator travels an edge in the last group
(i.e., from O to R), then it does not perform any manipulation,
it is useless to the palletizing task and could be removed
from the plant. Hence, edges of the last group should not be
travelled in any appropriate solution.

In this way, the subgraph given by (N , {e ∈ E | e ∈ N ×
N}) is a bipartite graph, since manipulators are only allowed
to move from an initial package position to a final one, (i.e.,
they are only allowed to perform a manipulation), and from
a final package position to an initial one, (i.e., after having
performed a manipulation, they have to move to a new initial
package position to perform a new manipulation).

At time t = 0, all manipulators occupy their initial position

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2021

in O and, at the end, each manipulator is required to be at its
final resting position in R. The sequence of movements of the
m-th manipulator describes a path on the graph that starts at
Om. Then, the manipulator has two options: it may go directly
to the corresponding final resting position Rm (in this case,
the manipulator does not move any package). Otherwise, the
manipulator travels to a node in I, then travels alternately
between nodes in F and I, and then, after having visited one
last node in F , goes to its final resting position Rm.

As a clarifying example, consider a system with N = 3
packages and M = 2 manipulators. The associated graph
G = (V , E), with node set V = {O1,O2, I1, I2, I3,
F1,F2,F3,R1,R2}, is depicted in Figure 2. The manipulator
at initial resting position O1 moves a package from initial
position I1 to final position F1, then picks up another package
at initial position I2 to drop it off at final position F2 and
finally goes to its final resting position R1. The manipulator
at initial resting position O2 moves a package from initial
position I3 to final position F3 and then moves to its final
resting position R2. The paths of the two manipulators are
highlighted in Figure 2 in blue and green, respectively.

I2

I1

I3

O1

O2

F2

F1

F3

R1

R2

Fig. 2: Graph associated to a system with 2 manipulators and
3 packages with highlighted manipulators paths.

We associate an index to each element of V . To this end,
set V = {1, . . . , |V|} and define function v : V → V , such
that (∀i ∈ {1, . . . ,M}) v(Oi) = i, v(Ri) = M +2N+ i, and
(∀i ∈ {1, . . . , N}) v(Ii) = M + i and v(Fi) = M +N + i.
Then, with respect to the node ordering given by v, graph G
has the following adjacency matrix A ∈ {0, 1}|V |×|V |

A =




0M,M 1M,N 0M,N IM,M

0N,M 0N,N 1N,N 0N,M

0N,M 1N,N 0N,N 1N,M

0M,M 0M,N 0M,N 0M,M


 , (1)

where, for any �,m ∈ N, 0�,m, 1�,m and I�,� are the � × m
zero matrix, the �×m matrix with all entries equal to 1 and
the �× � identity matrix, respectively.

In order to keep track of the path followed by each manip-
ulator, we introduce the following flow variables. For i, j ∈ V
and m ∈ M, define variable Xm

i,j ∈ {0, 1} as follows:

Xm
i,j =

{
1, if manipulator m moves from i to j,

0, otherwise.

Since each manipulator motion must correspond to an
element of the edge set E , for i, j ∈ V , m ∈ M, it must
be Xm

i,j ≤ Av(i),v(j).

For i ∈ V , real variable Ti represents the time at which
node i is visited by a manipulator. Given nodes i, j ∈ V , we
also associate to each edge in E from i to j a transition time
variable tij which represents the time required to perform a
transition from node i to node j. In the case of edges from
I to F , this also includes time τ , which is assumed to be a
known constant, required to manipulators for picking up and
releasing packages.

We define function ρ : N → R
2 such that, for i ∈ I, ρ(i)

represents the coordinates on the moving frame of the initial
package position associated to node i. Similarly, for j ∈ F ,
ρ(j) represents the coordinates, with respect to the moving
frame, of a final package position associated to node j.

At time t, the m-th manipulator can visit node i ∈ V only
if ρ(i) belongs to the m-th manipulator operating space. In
other words, letting x be the x-coordinate of ρ(i), it must
hold that x ∈ [qm − tw−W, qm − tw+W] or, equivalently,
tw ∈ [qm−x−W, qm−x+W]. Setting [ami , bmi] = [w−1(qm−
x −W), w−1(qm − x +W)], for all i ∈ V and m ∈ M, if
the m-th manipulator visits node i at time Ti, then it must
hold that Ti ∈ [ami , bmi]. This corresponds to a time window
requirement on the node visit.

Recalling assumption vi., note that the path type is only
relevant for the transitions from I to F , since these are the
only ones that can cause collisions. We assume that all other
motions are done in the fastest possible way (in general, along
a straight segment).
Collisions handling
As we mentioned earlier, packages are not lifted while being
manipulated, so, in order to ensure collisions avoidance, we
need to introduce the following quantities. For i ∈ I, j ∈ F ,
and � ∈ N , define variable c�i,j ∈ {0, 1} such that

c�i,j =



0, if a manipulation from ρ(i) to ρ(j) collides

with a package placed at ρ(�),
1, otherwise.

In other words, c�i,j = 1 if a package moved from the initial
position associated to node i to the position in the final layout
associated to node j does not collide with a package placed
at the position corresponding to node �. Otherwise, c�i,j = 0.

Note that variables c�i,j depend on x-coordinates of the
positions and initial-final positions association. Hence, they
cannot be precomputed as problem parameters. However, there
is a finite number of manipulation types which depend on
the final pallet layout and on initial y-coordinates of the
positions. In fact, packages get on the conveyor belt from a
single track infeed conveyor and they are manipulated without
modifying their x-coordinates. Hence, we can precompute
the shapes associated to the portion of conveyor belt surface
occupied during manipulations and, so, obtain the axis-aligned
minimum bounding box (AABB) associated to each type of
manipulation. The use of AABBs is particularly useful as it
allows for modeling collision avoidance as a MIP problem
(see, for instance, [23]). Moreover, a collision detection be-
tween a pair of AABBs can be decomposed along each axis
and modeled with just one logical constraint per axis.

LAURINI et al.: OPTIMIZING COOPERATIVE PALLET LOADING ROBOTS: A MIXED INTEGER APPROACH 5

(a) Pure translation. (b) Rigid transformation.
Fig. 3: Manipulation types.

For instance, consider two AABBs B1 and B2 whose
extremal points are {(x1min , y1min), (x1max , y1max)} and
{(x2min , y2min), (x2max , y2max)}, respectively, and assume B1

is the AABB associated to a manipulation from node i ∈ I to
j ∈ F and that B2 is the AABB associated to a package at
position � ∈ N . Then, B1 and B2 do not intersect if and only
if they are disjoint along x-axis or y-axis. This translates into
the following constraint:

c�i,j = (x1min ≥ x2max) ∨ (x1max ≤ x2min)

∨ (y1min ≥ y2max) ∨ (y1max ≤ y2min).
(2)

If c�i,j = 1, then B1 ∩ B2 = ∅, otherwise B1 ∩ B2 	= ∅.
Again, observe that logical constraints (2) can be converted
into linear ones with binary variables by means of standard
techniques in operation research (see, e.g., [23], [24]).

Note that AABBs associated to packages exactly represent
them since packages are themselves axis-aligned rectangles.
The same can be said for manipulations of packages that are
pure translations. In fact, since manipulations maintain pack-
ages x-coordinate fixed, the conveyor belt surface occupied
during a pure translation corresponds to an axis-aligned rect-
angle. Such a manipulation is depicted in Figure 3a, in which
the corresponding AABB is highlighted in red. Conversely, in
case of rotations, AABBs associated to such manipulations
overestimate, in general, the surface of the conveyor belt
covered during these kind of manipulations. An example of
this type of manipulation is depicted in Figure 3b, in which the
corresponding AABB is highlighted in red, whilst the actual
manipulation surface is highlighted in grey.

To handle collisions, during each manipulation we must
know which of the initial and final positions are currently
occupied by a package. To this end, we define a set of
binary variables as follows. Set K = {0, . . . , N}, then, for
k ∈ K, i ∈ N , define ski ∈ {0, 1} such that

ski =

{
1, if node i is occupied after the k-th manipulation,
0, otherwise.

Here, a manipulation corresponds to the transition of one
manipulator from a node in I to a node in F and the k-th
manipulation corresponds to the one that occupies the k-th
position in temporal order. Observe that when k = 0, s0i , with
i ∈ N , represents the state of package positions before the
first manipulation is performed.

Transitions from I to F correspond to actual package
movements on the belt and are susceptible to collisions,
while all other transitions correspond to motions in which
the end-effectors of manipulators are lifted from the belt

and cannot cause collisions. Variables ski contain information
about positions occupied by each package at each time a
manipulation is performed. Note that, if i ∈ I, s0i = 1 and
sNi = 0, whilst, if j ∈ F , s0j = 0 and sNj = 1, since, initially,
all nodes in I are occupied and all nodes in F are empty, and
after all N manipulations the situation is reversed, with all
nodes in I being empty and all nodes in F being occupied.

For i ∈ I, k ∈ K \ {0}, define binary variable

pki = sk−1
i − ski . (3)

Then, pki = 1 if and only if the k-th manipulation moves the
package at the initial position associated to node i. Conversely,
for j ∈ F , k ∈ K \ {0}, define binary variable

pkj = skj − sk−1
j . (4)

Then, pkj = 1 if and only if the k-th manipulation moves a
package to the final position associated to node j.

IV. PROBLEM FORMULATION

Let us start presenting the model constraints associated to
the core of an mTSP model.∑

j∈N∪Rm∈M
Xm

i,j = 1, i ∈ N ∪ O, (5)

∑
i∈N∪Om∈M

Xm
i,j = 1, j ∈ N ∪R, (6)

∑
i∈N∪O

Xm
i,j −

∑
i∈N∪R

Xm
j,i = 0, j ∈ N ,m ∈ M, (7)

Xm
i,j ≤ Av(i),v(j), i, j ∈ V ,m ∈ M, (8)

Xm
i,j ∈ {0, 1}, i, j ∈ V ,m ∈ M. (9)

Condition (5) ensures that every node i ∈ N ∪ O has
one and only one outgoing arc, considering every possible
destination node j ∈ N ∪ R and any manipulator m ∈ M.
Similarly, condition (6) ensures that every node j ∈ N ∪ R
has one and only one ingoing arc. Condition (7) is a flow
conservation constraint, namely, for any j ∈ V , it ensures
that every manipulator can leave node j if and only if it
has just reached it. Condition (8) ensures that the edges
travelled by manipulators belong to edge set E , where A is
the adjacency matrix defined in (1). Finally, condition (9) is a
binary requirement.

Let us now introduce the constraints associated to the state
of the system.

ski ≥ sk+1
i , i ∈ I, k ∈ K \ {N}, (10)

skj ≤ sk+1
j , j ∈ F , k ∈ K \ {N}, (11)∑

k∈K\{0}
pki p

k
j =

∑
m∈M

Xm
i,j , i ∈ I, j ∈ F , (12)

ski ∈ {0, 1}, i ∈ N , k ∈ K, (13)

s0i = 1, sNi = 0, i ∈ I, (14)

s0j = 0, sNj = 1, j ∈ F . (15)

Constraint (10) states that, for each i ∈ I, variable ski is
monotone non-increasing with respect to k, since all packages
at initial positions are, eventually, moved. Similarly, condi-
tion (11) state that, for each j ∈ F , variable skj is monotone

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2021

non-decreasing, since all final positions are initially empty and,
at the end, occupied. Constraint (12) ensures that a transition
from node i ∈ I to node j ∈ F can occur if and only if exactly
one manipulator transitions from i to j. Note that pki and pkj
in constraint (12) are defined as in (3) and (4), respectively.
Also, note that the non-linearity in the left-hand-side of this
condition can be removed by introducing a set of additional
N2 binary variables representing the value of products pki p

k
j .

Condition (13) is a binary requirement. Finally, conditions (14)
and (15) are the already discussed initial and final conditions
on state variables s.

Now, let us introduce those constraints which represent the
TSPTW part of the model.

(Ti + tij − Tj)
∑

m∈M
Xm

i,j ≤ 0, i, j ∈ V , (16)

∑
m∈M

ami
∑
j∈V

Xm
i,j ≤ Ti ≤

∑
m∈M

bmi
∑
j∈V

Xm
i,j , i ∈ N ∪ O, (17)

∑
m∈M

amj
∑
i∈V

Xm
i,j ≤ Tj ≤

∑
m∈M

bmj
∑
i∈V

Xm
i,j , j ∈ R, (18)

∑
i∈I

Ti

(
pki − pk+1

i

) ≤ 0, k∈K\{0, N}. (19)

Condition (16) states that, if manipulator m travels from
node i to node j, this has to be done in a time greater
than or equal to tij . Note that this non-linear constraint
can be replaced by a linear one by using Big-M constraints
(this is a standard technique in Operations Research; see, for
instance, [24]). Conditions (17) and (18) represent the time
window constraints, enforcing the fulfillment of the lower
bounds and upper bounds of the nodes visit time, respectively.
They state that a node visit time has to fulfill the time window
constraint associated to the manipulator that actually visits that
node. Finally, condition (19) states that the visit time of an
initial position at the k-th manipulation has to be smaller than
the one of an initial position at the following manipulation.
Also this non-linear constraint can be replaced by a linear one
by means of Big-M constraints.

We now introduce the collision avoidance constraints.

Xm
i,j ≤

3 + c�i,j − sk−1
�

−pki − pkj
,

i ∈ I, j ∈ F ,m ∈ M,
k ∈ K \ {0}, � ∈ N , � 	= i, (20)

c�i,j ∈ {0, 1}, i, j ∈ V , � ∈ N . (21)

Condition (20) ensures that a transition from a node i ∈ I
to a node j ∈ F is not allowed if a package at node i is
manipulated to node j in order k (i.e., pki = 1 and pkj = 1),
and, right before the k-th manipulation, there is a package
that occupies node � (i.e., sk−1

� = 1), other than node i, that
collides with this manipulation (i.e., c�i,j = 0). Condition (21)
is a binary requirement. Finally, we recall that variables c�ij
also depend on constraints (2) which can be reformulated as
a MIP problem as shown in [23].

The following constraint represents assumption vi.:

(xj − xi)
∑

m∈M
Xm

i,j = 0, i ∈ I, j ∈ F . (22)

Constraint (22) ensures that if a manipulation is performed
between a node i ∈ I and a node j ∈ F , then the x-
coordinates associated to these two nodes have to be equal.

We now introduce the last set of constraints, which involve
only continuous variables.

tij = τ +
|yi − yj |

w
, i ∈ I, j ∈ F , (23)

tij ≥ |xi − xj |+ |yi − yj |
w

,
i ∈ V \ I, j ∈ V ,

or i ∈ I, j ∈ V \ F ,
(24)

ami =
qm − xi −W

w
, i ∈ V ,m ∈ M, (25)

bmi =
qm − xi +W

w
, i ∈ V ,m ∈ M, (26)

(xj − xk)Πj,k ≤ 0, j, k ∈ F , j 	= k. (27)

Constraints (23) and (24) define transition times. In particu-
lar, (23) represents the transition time constraint when a ma-
nipulation is performed; the x-coordinate of the two positions
has to be equal by (22) and so the transition time only depends
on the offset along y-axis of the two positions and on a fixed
term τ which represents the time required to manipulators
for picking up and releasing packages. In fact, all values on
the right-hand side of these constraints are problem data, so
that in this case tij is a fixed value. Whilst, constraint (24)
represents transition times in all remaning transitions. Note
that when a robot is not performing a manipulation, we assume
that it is moving along a straight segment connecting its
current starting position to its destination position. Moreover,
in order to avoid the presence of a square root in the right-
hand-side of the constraint, in (24) the actual transition time
is overestimated by using the L1 distance instead of the L2

one (i.e., the Euclidean distance). The right-hand side of these
constraints is a convex piecewise linear function. Thus, each
one of these constraints can be replaced by a pair of linear
ones. Constraints (25) and (26) represent the lower and upper
limit of the time window of each node for each manipulator,
respectively. Lastly, constraint (27) represents the precedences
between final positions. Since we assume the conveyor belt
moves from left to right, the pallet layout is filled from right
to left. Hence, assumption vi. requires precedences between
final positions for ensuring the feasibility of the given layout.
Π ∈ {0, 1}N×N is a precedence matrix which is precomputed
based on the given pallet layout known a priori. For any
j, k ∈ F such that j 	= k, Πj,k = 1 if final position j cannot
precede final position k along x-axis on the conveyor belt
(i.e., xj ≤ xk); otherwise, if the mutual position of the two
is not relevant in regards of the feasibility of the layout, then
Πj,k = 0.

After applying the previously mentioned standard modi-
fications (addition of auxiliary variables and use of Big-M
constraints), Problem (5)–(27) becomes a MILP and can be
solved by standard solvers for this class of problems.

V. SOLUTION STRATEGY

As we showed in the previous section, Problem (5)–(27) is
a MILP and so it could be solved using any available MILP
solver. However, due to the complexity of the problem and
the amount of decision variables, which rapidly increase with
the number of packages and manipulators, directly solving
Problem (5)–(27) by means of a MILP solver alone may

LAURINI et al.: OPTIMIZING COOPERATIVE PALLET LOADING ROBOTS: A MIXED INTEGER APPROACH 7

result in unacceptably long computational times due to the
difficulty of the solver in finding a feasible solution. In fact,
the computational times for solving instances of this problem
rapidly explode if the number of packages and manipulators
slightly increases. Even though for high-speed palletizing
machines the 3PSP need not be solved in real time, it is
still desirable to keep computational times reasonably low.
For this reason, we designed a metaheuristic which consists in
separating the problem into two subproblems, which can be
solved exactly by using MILP solvers with good performances
compared to solving the initial problem altogether.

Basically, we separate the problem of assigning manipula-
tions to robots, which essentially represents the MIP part of the
model, from the one of optimizing package positions, which
roughly corresponds to the LP part of the model.

For the MIP subroutine, in Problem (5)–(27) we fix initial
package positions xi, with i ∈ I, as an input parmeter and
solve (5)–(27) with objective function:

min max
m,k∈M

∣∣∣∣∣∣
∑

i∈I j∈F

Xm
i,j −

∑
i∈I j∈F

Xk
i,j

∣∣∣∣∣∣ . (28)

Objective function (28) represents the maximum difference
between the number of manipulations performed by each
robot. It is desirable that all the available robots roughly
perform the same number of manipulations in order to reduce
the risk of failures due to the task overload of a robot and to
equalize robots wear.

Conversely, for the LP subroutine, in Problem (5)–(27)
we fix binary flow variables Xm

i,j , for i ∈ I , j ∈ F and
m ∈ M. As we already said, the ultimate objective is
to maximize production. Given a conveyor belt speed w,
maximizing production means finding the minimum-length
sequence of package positions that allows manipulators to
complete the given pallet layout moving all packages to
their final position. Hence, the objective function for this
subproblem is the following one:

minmax
i,j∈I

|xi − xj | . (29)

Objective function (29) represents the length of package
positions sequence along x-axis, which we wish to minimize.
Note that both objective functions (28) and (29) are convex
piecewise linear, however, using standard procedures, it is
possible to remove these non-linearities by adding linear
constraints to the problem so that (28) and (29) are replaced
by linear functions.

In this way, starting from well spaced initial positions along
x-axis, we can fix the positions and solve the MIP subproblem;
once this is solved, we fix the obtained manipulator tasks
assignment variables and solve the LP subproblem, that is,
we optimize package positions. We iterate this procedure
alternating the solution of the two subroutines feeding the
solution of a subroutine to the other and viceversa until
convergence, that is, until the package positions sequence
cannot be further shortened. Note that solutions obtained
through this metaheuristic, despite being suboptimal, are still
of good quality and obtained with low computational times,

as we will see from the numerical experiments presented in
the next section.

VI. NUMERICAL EXPERIMENTS AND CONCLUSIONS

In this section, we present some numerical experiments
that aim at showing how this approach provides good quality
results for solving the 3PSP in high-speed palletizing ma-
chines, taking into account some of their kinematic properties.
In the following, we consider a two-manipulator palletizing
machine with a conveyor belt moving at speed w = 0.45
m s−1 and with a stopping bar at the end of it. The speed of
the manipulators is 1.5 m s−1.

Let us consider a pallet layout example for presenting the
manipulation sequences. In this scenario, the task is to form a
layout, given in Figure 4, of 6 packages of size 0.410× 0.204
m, whose positions are labeled with F1, . . . ,F6. Each package
in the layout is assigned to a specific y coordinate, whilst
the x coordinates are irrelevant in this regard as discussed
in assumption v.. As long as packages are rearranged on the
conveyor belt complying with precedence matrix Π of (27),
the distance between packages along x-axis is not relevant.
Precedences between final positions in the layout require that
F1 and F2 need be placed after all other packages on the right,
which can be placed in either order among each other. By
solving Problem (5)–(27) associated to the layout of Figure 4,
we obtain the package and manipulations sequences shown in
Figures 5 and 6, which represent the first and the second robot
manipulation sequence, respectively. Manipulators origin po-
sitions are labeled with O1 and O2, packages initial positions
with I1, . . . , I6, packages final positions with F1, . . . ,F6, and
manipulators final resting positions with R1 and R2. Note that
R1 and R2 coincide. The path and the AABBs associated to
the first and the second manipulator are highlighted in blue
and green, respectively.

We used the metaheuristic presented in Section V whose
solution time, on this example, was 4.1569 s. Here, we solved
the two subroutines of the metaheuristic with Gurobi [22], a
commercial solver for mixed integer linear programs. We also
solved the problem altogether with Gurobi (whose solution
time was 2972 s) in order to compare the quality of the meta-
heuristic solution and found that in this case the metaheuristic
provided the optimal solution of the problem. The reason why
we picked a commercial solver is that in this work we did not
focus on special purpose techniques for solving the proposed
model with better performances, but this is indeed a topic for
future research.

F1

F2

F3

F4

F5

F6

Fig. 4: Pallet layout.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2021

O1 O2

I1

I2I3

I4I5

I6

F1

F2

F3

F4

F5

F6

R1

R2

Fig. 5: First manipulator sequence.

O1 O2

I1
I2I3

I4I5
I6

F1

F2

F3

F4

F5

F6

R1

R2

Fig. 6: Second manipulator sequence.

Finally, Figure 7 presents some computational time results
for the proposed metaheuristic coupled with Gurobi for solving
instances of Problem (5)–(27). For each increasing number of
packages, we randomly generated 10 pallet layouts and solved
the associated problems assuming there were two manipulators
available. These layouts were generated by randomly placing
non overlapping packages either parallel or perpendicular to
the conveyor belt movement on a 2 × 2 m pallet. Figure 7
shows the box-and-whisker plot of the solution times for the
previously described instances of Problem (5)–(27). It also
shows the mean solution time for solving the same instances
using Gurobi alone, for which we put a time limit of 3600 s
(that also explains why the curve flattens between 7 and 9).
Note that after 9 packages we stopped testing Gurobi alone as
the benefits of the metaheuristic over Gurobi were clear. Note
that we also performed tests on real life (and more regular)
layouts provided by a company and, in that case, the solution
times of the metaheuristic never exceeded 1000 s up to 21
packages.

We are aware of the combinatorial explosion this model may
cause as packages number increases and we are developing
techniques for addressing this issue. However, note that, for
the specific application of this model, the actual number of
packages generally does not go beyond a couple of tens.
Moreover, the 3PSP is solved offline, so that computational
times need not be compatible with real time applications, and
computing times of the order of minutes are allowed. Finally,
in order to improve performances, in future works, we will
use approaches specifically tailored to the problem at hand (for
instance, dynamic programming), leveraging the rich literature
on the TSP problem and its variation.

ACKNOWLEDGMENT

The authors are grateful to the Associate Editor and the
anonymous Reviewers for the suggestions which allowed to
improve this work.

REFERENCES

[1] M. M. Solomon, “Algorithms for the vehicle routing and scheduling
problems with time window constraints,” Operations Research, vol. 35,
no. 2, pp. 254–265, 1987.

[2] M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, Net-
work Routing, ser. Handbooks in Operation Research and Management
Science. Elsevier, 1995, vol. 8.

3 5 7 9 11 13 15 17 19 21

100

101

102

103

104

Fig. 7: Solution times of the metaheuristic compared to Gurobi
for different numbers of packages.

[3] A. N. Letchford and R. W. Eglese, “The rural postman problem with
deadline classes,” European Journal of Operational Research, vol. 105,
pp. 390–400, 1998.

[4] T. Bektas, “The multiple traveling salesman problem: an overview of
formulations and solution procedures,” Omega, vol. 34, pp. 209–219,
2006.

[5] J. Nossack, B. Golden, E. Pesch, and R. Zhang, “The windy rural
postman problem with a time-dependent zigzag option,” European
Journal of Operational Research, vol. 258, pp. 1131–1142, 2017.

[6] D. S. Johnson, “Fast algorithms for bin packing,” Journal of Computer
and System Sciences, vol. 8, no. 3, pp. 272–314, 1974.

[7] J. O. Berkey and P. Y. Wang, “Two-dimensional finite bin-packing
algorithms,” Journal of the Operational Research Society, vol. 38, no.
423–429, 1987.

[8] A. Soke and Z. Bingul, “Hybrid genetic algorithm and simulated anneal-
ing for two-dimensional non-guillotine rectangular packing problems,”
Engineering Applications of Artificial Intelligence, vol. 19, pp. 557–567,
2006.

[9] H. Dyckhoff, “A topology of cutting and packing problems,” European
Journal of Operational Research, vol. 44, pp. 145–159, 1990.

[10] G. Abdou and E. Lee, “Contribution to the development of robotic
palletization of multiple box sizes,” Journal of Manufacturing Systems,
vol. 11, no. 3, pp. 160–166, 1992.

[11] C. S. Chen, S. M. Lee, and Q. S. Shen, “An analytical model for the
container loading problem,” European Journal of Operational Research,
vol. 80, pp. 68–76, 1995.

[12] S. Martello, D. Pisinger, and D. Vigo, “The three-dimensional bin
packing problem,” Operations Research, vol. 48, no. 2, pp. 256–267,
2000.

[13] G. Fasano and J. D. Pintér, Eds., Optimized Packings with Applications.
Springer, 2015, vol. 105.

[14] K. A. Dowsland, “An exact algorithm for the pallet loading problem,”
European Journal of Operational Research, vol. 31, pp. 78–84, 1987.

[15] ——, “Efficient automated pallet loading,” European Journal of Oper-
ational Research, vol. 44, pp. 232–238, 1990.

[16] B. Ram, “The pallet loading problem: A survey,” International Journal
of Production Economics, vol. 28, pp. 217–225, 1992.

[17] E. Silva, J. F. Oliveira, and G. Wäscher, “The pallet loading problem:
a review of solution methods and computational experiments,” Int.
Transactions in Operational Research, vol. 23, pp. 147–172, 2016.

[18] G. Scheithauer, Introduction to Cutting and Packing Optimization
Problems, Modeling Approaches, Solution Methods, ser. Int. Series in
Operations Research & Management Science. Springer, 2017.

[19] H. A. Khan and S. H. Masood, “Placement sequence methodology in
pallet pattern formation in robotic palletisation,” Advanced Materials
Research, vol. 383–390, pp. 6347–6351, 2012.

[20] H. A. Khan, S. H. Masood, and A. Giecco, “An algorithm to determine
placement sequence in robotic pallet pattern formation,” Advanced
Materials Research, vol. 403–408, pp. 3953–3958, 2012.

[21] S. H. Masood and H. A. Khan, “Development of pallet pattern placement
strategies in robotic palletisation,” Assembly Automation, vol. 34, no. 2,
pp. 151–159, 2014.

[22] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2020.
[23] M. Fischetti and I. Luzzi, “Mixed-integer programming models for

nesting problems,” Journal of Heuristics, vol. 15, pp. 201–226, 2009.
[24] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:

Algorithms and Complexity. Dover Publications, Inc., 1998.

